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Abstract

Demand forecasting is and has been for years a topic of great interest in the

electricity sector, being the temperature one of its major drivers. Indeed, one

of the challenges when modelling the load is to choose the right temperature, or

set of temperatures, for a given load time series. However, minimum research

efforts have been devoted to this topic. This paper reviews the most relevant

methods that were applied during the GefCom2014 electricity demand forecast-

ing competition and presents a new approach to weather station selection, based

on Genetic Algorithms, which allows finding the best combination of tempera-

tures for any demand forecasting model, and outperforms the results of those

methods. In addition, our empirical results show that using different weights

to combine the temperatures, optimized using the Broyden Fletcher Goldfarb

Shanno algorithm, allows achieving significant error improvements.

Keywords: Electricity load forecasting, Weather station selection, Variable

selection and combination, Genetic Algorithms, BFGS algorithm

1. Introduction

Energy forecasting has been of great interest from both academic and indus-

try perspectives, especially, since the arrival of the firsts liberalized electricity

markets. Among other relevant variables, electricity demand forecasting has
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been one of the most studied due to its importance for scheduling electricity5

generation, strategic bidding, making investment or regulatory decisions, and

due to its importance as explanatory variable for other factors such as the spot

price [1].

For years, all efforts have focused on point load forecasting and a wide

amount of literature, including different approaches, have been published. How-10

ever, the increasing market competition and renewable energy integration have

caused a rapid growth of probabilistic load research. In [2], an exhaustive lit-

erature review about load forecasting and its evolution can be found. It is well

known, as it can be seen in the vast majority of papers cited in [2], that the tem-

perature is one of the main drivers of electricity demand, and their non-linear15

relationship has been widely studied. Because of that reason, the selection of

the temperature or temperature combination to use for each problem is one of

the firsts steps when modelling the load. Furthermore, electricity demand time

series usually aggregate consumption from different geographical regions where

there is typically available data from more than one weather station. For ex-20

ample, when the goal is to forecast the load of a given European country or a

US state, the temperature of each city could be a candidate input variable for

the model.

Weather station selection (WSS) methods aim at solving that problem.

Given an electricity demand, their objective is to select the most relevant tem-25

peratures for that time series. As stated in [3], where authors proposed a sys-

tematic methodology for temperature selection, minimal research efforts have

been devoted to this topic. In [3], the different approaches used in the Gef-

Com2012 load forecasting competition are reviewed, raising two questions: (1)

how many weather stations should be used and (2) which ones. Here, we will30

also focus on those two variable selection questions, and propose a new approach

to WSS to allow answering both of them. However, we will also review two addi-

tional issues that are also relevant when applying any WSS method: (3) how to

combine the different temperatures, and (4) for which model this combination

is suitable. The third question is usually solved in the literature by averaging35
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the selected temperatures, but we will measure the impact of combining them

using different weights. Regarding the fourth one, we will discuss the effect of

using different models for the WSS method and the subsequent load forecasting

model: is there an optimal temperature combination or, on the contrary, the

goodness of the selection depends on the forecasting model we are going to use?40

In summary, this paper proposes a new methodology for WSS for electricity

load forecasting based on genetic algorithms, and discusses those four questions.

First, the data from the GefCom2014 is described, as well as the benchmark

model that has been used, including a brief description of the problem and the

main approaches were used for WSS selection by the seven participant teams45

of the load forecasting competition presented in [4]. Next, the proposed GA

approach for WSS will be presented, and its results, compared with the WSS

method presented in [3] will be shown. Then, the potential improvements of

using weights when combining the temperatures will be analysed. Finally, con-

clusions and future possible improvements will be presented.50

2. Problem description

This section aims to describe the main features of the GefCom2014 fore-

casting competition, since it has been the source of data for the WSS method

addressed in following sections. It also presents the benchmark model used in

this paper, and briefly explains the different approaches of the top participants55

of the competition, focusing on their WSS methods.

2.1. GefCom2014 load forecasting competition and data description

The Global Energy Forecasting Competition of 2014 (GefCom2014) took

place after the success of the previous edition of 2012 about hierarchical load

forecasting, and dealt, in this case, with probabilistic forecasting in order to60

better capture the uncertainties of modern grids. All the data, rules, and main

results are presented in [4]. In spite of the fact that it consisted of four forecast-

ing tracks (load, price, wind and solar power), here we will only focus on the

electricity load forecasting problem.
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Figure 1: Load (Top) and temperature from the weather station w10 (Bottom)

time series in GefCom2014 (years 2007-2010).

The information provided for that track consisted of 69 months of hourly65

electricity load data (a single demand time series), from 01/01/2005 to 30/09/2010

and 117 months of hourly weather data, from 01/01/2001 to 30/09/2010. Specif-

ically, the weather data, consisted of 25 temperatures from different weather

stations, of which there is no further geographical information. In addition, the

list of US federal holidays could also be used. After this, during the competition,70

15 additional months of data (weather and load) were provided. In this paper,

in order to fairly compare our method with other methods proposed during the

competition for WSS, only the first data release will be used.

In addition, let us describe the different data partitions that have been used

in this paper. Using the same criteria of [5], where authors apply the same75

WSS method as the one presented in [3] with GefCome2014 data, the years
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Figure 2: Nonlinear relationship between the load and the temperatures w10

(Top-left) and w3 (Bottom-left), and real and estimated load using these two

temperatures and the benchmark model (Right).

2007 - 2009 will be used as training data (in-sample, 26304 points), and the

year 2010 will be used as test set (out-of-sample, 6553 points). Figure 1 shows

the load time series as well as one of the temperature time series (the one from

the weather station w10) during both in-sample and out-of-sample periods.80

As aforementioned, temperatures are one of the major drivers of electricity

demand. These variables, together with calendar ones, such as the hour, the

day of the week or the month are tipically the most used ones to forecast the

load [6]. Modeling the well-known non-linear relationship between load and

temperature can be determinant, and the accuracy of the model may depend85

largely on the selection of the right ones. As an example, Figure 2 shows this

non-linear relationship using two different temperature time series. The selected

temperatures (w10 and w3) are the best and the worst ones in terms of MAPE

in the ranking presented in [5]. The differences between both responses can

5



Figure 3: Dendrogram of the 25 weather stations of the GefCom2014 dataset.

The dissimilarity threshold has been set to 0.02, resulting 15 clusters (resulting

groups of temperatures are coloured). In the left part, the weather stations

selected by the different competition teams are shown.

be seen in the figure, since the dispersion of the cloud of points when using the90

temperature w3 is noticeably greater and, therefore, the response of the demand

is much less clear.

Furthermore, in order to quantify the effect of using one time series or the

other, the benchmark demand model used during this paper, and described be-

low in subsection 2.2, is fitted using both temperatures. The differences between95

the estimated load in both cases are illustrated in the week used as example in

Figure 2 (right), and the error in the test set is measured in both cases. Using

the temperature w10, the RMSE in the test set is 14.994◦F, whereas using w3

is 22.514◦F (more than 50% worse). This fact highlights the importance of a

careful choice of temperatures before modelling the load, due to the huge impact100

in error that a poor choice can mean.

Finally, let us describe one of the the most common problems when selecting

temperatures for forecasting electricity load, that is also present in this partic-

ular problem. When studying the demand of a given geographical region, some
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of the candidate temperatures come usually from weather stations that are close105

to each other, leading to a great correlation between them. As it can be seen

in the dendrogram of Figure 3, for example, considering a correlation threshold

of 0.98, the temperature set could be reduced from 25 temperatures to only 15.

This high correlation is usually a problem when selecting the proper variables

when applying a WSS method, and some of the difficulties caused by this effect110

will be discussed below.

2.2. Benchmark model

Tao’s Vanilla model (from now on, Vanilla) was first proposed in [7], and was

used as benchmark during GefCom2012, being ranked in the top 25% among

over 100 teams. It is a multiple linear regression model with the following effects:115

• Main effects: linear trend, the first three order polynomials of the tem-

perature (T , T 2 and T 3), and the categorical variables Month, Weekday

and, Hour.

• Cross effects: Hour∗Weekday, T ∗Hour, T 2∗Hour, T 3∗Hour, T ∗Month,

T 2 ∗Month and T 3 ∗Month.120

Besides being the benchmark during GefCom2012, this model was also used

in [3] when presenting their WSS method, and it was also used by one of the

participants of GefCom2014, (the Jingrui team, see [5]). Due to its simplicity

and reproducibility, and in order to compare our results with theirs, this model

will also be used as a benchmark in this paper.125

2.3. WSS approaches in GefCom2014

In this section, the WSS approaches of the seven participant teams summa-

rized in [4], including the top five entries of the competition, are discussed. In

first place, the Tololo team [8], based their load forecasting model in generalised

additive models (GAMs), creating a new virtual temperature by averaging four130

WS (6, 10, 22 and 25), selected using generalised cross validation (GCV). Their
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results show that the resulting series leads to a significant improvement in GCV

scores with respect to only using any of the stations separately.

Next, the Adada team [9] initially selected a set of six temperatures (6, 7,

10, 13, 22, and 25), also using GAMs and generalized cross validation. How-135

ever, they did not obtain good results with that approach and decided to refine

their WSS, calculating a weighted average using the exponentially weighted av-

erage algorithm (EWA, see [10]). Using this method, they finally chose three

temperatures with equal weights: 6, 10 and 13. Noteworthy, this result can be

analysed by observing the dendrogram presented in Figure 3. Their final three140

time series were included in their initial set of 6 temperatures selected with

GCV. Two of the discarded temperatures (22 and 25) were highly correlated

with station 10, that can be considered the representative of that cluster in their

final election, which includes 3 temperatures that present fairly low correlations

between them.145

In third place, the team Jingrui (Rain) Xie [5] (from now on, Jingrui),

used the WSS method described in [3]. Based on the Vanilla model, all the

temperatures are initially ranked, measuring their in-sample MAPE. After that,

the first n stations of the ranking are incrementally combined by averaging, with

n between one and the total number of stations (25 in this case), the out-of-150

sample MAPE of each combination is calculated, and the best set is finally

chosen. Using this method, the average of the first 11 temperatures of their

ranking leads to the best result. Specifically, they finally selected the following

stations: 2, 6, 7, 8, 10, 13, 18, 21, 22, 24, and 25. It is worth mentioning

that this method, that adds in an incremental manner the variables taking155

into account the ranking of its individual in-sample MAPE, can lead to models

with more variables than necessary. In this particular example, the first three

temperatures of the ranking (stations 10, 22 and 25) have a correlation greater

than 98% according to Figure 3, and this selection method would never allow

removing useless variables, or to consider sets in which only one of this three160

temperatures would be chosen, for example. To illustrate the problems this

may cause, the combination of three WS determined by their ranking is already
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worse in this case than the set of three temperatures used by the Adada team

(presents an out-of-sample RMSE 10.47% greater). Furthermore, only removing

the w25 station from their final selection (the third one of their ranking, which165

is the one with highest correlation with w10), their out-of-sample error would

improve 1.1%.

In fourth and fifth place, the teams Oxmath [11] and E.S.Mangalova [12] did

not use any WSS method, and they simply used the mean of the 25 available

temperatures. Bidong Liu, also listed in [4], and ranked eighth in the competi-170

tion, used the same approach. Finally, Ziel Florian [13], which took second place

in GefCom2014-E (an in-class extended version of GefCom2014 load forecasting

competition, organized by Tao Hong and also open to external participants)

and whose results were also presented in [4], chose the stations 3 and 9 because

they gave the best in-sample fits to a cubic regression of the load against the175

temperature.

To conclude, Table 1 summarizes all these different approaches. The purpose

of this table is to collect the different methods that have been used by each

team, present the stations that have been selected in each case, and compare

their in-sample and out-of-sample errors, using the benchmark model. In spite180

of the fact that all the presented methods have been tested here using the

same criteria and forecasting model, it should be noted that the comparison

of their errors is not completely fair. As aforementioned, the use of one load

forecasting model or the other can determine the suitability of the different

stations, and Table 1 is a clear example of that. The model structure or the185

use that each one makes of the different candidate explanatory variables (trend,

calendar variables, temperatures...) can determine the best temperatures for

each one. For that reason, we cannot conclude which set of temperatures is the

best one in general terms, and our goal will be to find the best combination for

one particular model: the Vanilla model (described in subsection 2.2).190

In that sense, it can be seen that the WSS method presented by Jingrui

team clearly outperforms the errors of the rest of models, but it is worth noting

that their WSS method makes use of the Vanilla model to rank the variables to
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Table 1: Summary of the different WSS methods applied during GefCom2014.

The column Stations shows the WS that have been finally selected by each team.

The two last columns show the RMSE, both in-sample and out-of-sample, using

the Vanilla model

.

Team name Method Stations
RMSE

(in-sample)

RMSE

(out-of-sample)

Tololo [8]

Generalized

cross validation

(GCV)

6, 10, 22, 25 10.318 12.579

Adada [9]

Initially GCV.

Refined using

EWA

6, 10, 13 10.050 12.274

Jingrui

(Rain) Xie [5]

Average of the

n best stations

from Vanilla

model [3]

2, 6, 7, 8, 10,

13, 18, 21, 22,

24, 25

9.523 11.772

Ziel Florian [13]

Goodness of fit

to a cubic

regression

3, 9 18.552 20.920

Bidong Liu [13],

OxMath [11],

E.S.Mangalova [12]

Average of all

the stations
1-25 10.462 12.700

be used. In this particular case, their results give us an idea of how much error

reduction can be attributed to the use of the right WSS method (i.e. using195

the same model to choose temperatures and forecast the load). Comparing

their results with those teams that did not use any WSS method, averaging

all the temperatures, it can be seen that they achieved more than 7% error

improvements both in and out-of-sample.

In a intermediate point, the teams Tololo and Adada present the second and200
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third best results, also outperforming the error of those teams that did not apply

any WSS method, and averaged the 25 stations. Finally, the case of the team

Ziel Florian is the clearest example of the huge differences that can mean the use

of one forecasting model or the other when selecting temperatures. Attending

to the goodness of the fit to a cubic regression between load and temperature,205

they selected the two best time series: the stations 3 and 9. However, these

two temperatures are the worst two according to the in-sample MAPE ranking

of [5], and also, the two with highest GCV scores in the ranking of [8]. As can

be seen in Table 1, the use of the average of those two temperatures as input

for the Vanilla model provides the worst in-sample and out-of-sample errors: in210

both cases more than 77% worse than the best option, and more than a 64%

worse than not applying any WSS method. This fact highlights the dependency

of the demand model when applying any WSS method, and gives us an idea of

the huge difference in terms of error that using different WSS and forecasting

models can mean.215

3. Proposed GA approach

As it can be seen in the analysis of the previous section, the selection of how

many temperatures and which ones must be used is not a trivial decision, and

the goodness of the choice depend on the forecasting model that will be used

afterwards.220

For that reason, one of the main advantages of the method described in [3]

is that, in spite of the fact that it is presented using the Vanilla model, it is a

generic WSS method that allows finding a good temperature combination for

any load forecasting model. Its simplicity and reproducibility are also great

strengths of the method. However, its incremental nature, based on the error225

of each temperature separately, does not allow, for example, finding a com-

bination without temperatures that are highly correlated, and can lead to an

over-parametrized combination of temperatures.

In this section, we propose a new approach to WSS, based on genetic algo-
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rithms (GA), that shares some features with the method presented in [3], but230

aims to solve its main drawbacks. Regarding their similarities, the GA approach

allows to find the best temperature combination for any load forecasting model.

As in [3], we will use the Vanilla model, which will be the fitness function of

the GA, due to its simplicity and relative computational simplicity. Regarding

how to combine the temperatures, we will also follow a similar approach to [3],235

and will be combined by averaging. However there are important differences

between both methods. The main advantage of our GA approach is that it does

not add the temperatures incrementally, what allows testing, for any number of

temperatures (K) the optimum combination independently of the selected ones

in the execution with K − 1, thus avoiding the problem of selecting sets with240

high correlated variables.

GA are heuristic optimization methods based on natural evolution, and are

explained in detail for example in [14] and [15]. In summary, a first population of

individuals (representing different candidate solutions) is initially created, then

their individuals evolve iteratively, generation to generation, achieving better245

and better results attending to an objective (fitness) function. The fitness of

each individual of the population is calculated in each iteration, being the better

candidates more likely to stay in the following generation. The creation of the

next generation from a previous one depends on two operators: crossover and

mutation. Furthermore, if the elitist selection is present, the best candidates of250

the population, the elite, are kept unchanged to the next generation. The nature

of this kind of algorithms make them suitable for variable selection, and several

examples of its use can be seen in [16], [17] or [18]. However, we have not found

any GA approach in the literature regarding WSS methods. Here, the proposed

WSS-GA method uses Vanilla to compute the fitness function, and has specific255

initialization, crossover and mutation functions that will be explained below. It

has been implemented using the Global Optimization Toolbox of MATLAB.

Firstly, let us describe the genetic representation and the parameters that

have been used. Following the approach described in [16], each individual is

encoded as a set of N 0’s and 1’s, being N the total number of input candidate260
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variables (i.e. the 25 weather stations time series when using the data from

GefCom2014), and being K the number of selected variables by an individual

(i.e. the number of ones). For example, in a variable selection problem with

N = 8 candidates, the chromosome 01001001 would represent an individual

with K = 3, that will use the variables 2, 5 and 8 in the modelling process,265

omitting the other five ones.

Concerning the fitness function, given a particular individual, the average of

its selected temperatures is computed and then, using this new virtual temper-

ature as input, the Vanilla model is fitted to the in-sample data. Finally, its

in-sample RMSE is measured, which is used later as fitness score.270

Regarding the composition of each generation of the population, 5% of the

population forms the elite, the best performing individuals of each generation

that keep unmodified in the next one. Then, the 80% of the remaining indi-

viduals will generate crossover children, and the rest, will generate mutation

children. Before describing the initialization, mutation and crossover functions,275

let us explain the execution process that we followed, since it has conditioned

the design of the different operators.

As aforementioned, the goal of our GA approach is to find how many and

which temperatures must be used. In order to answer that two questions we have

followed a similar approach to the one used by the Jingrui team in [5], where280

the error of the combinations of weather stations for any value of K is presented

(from only one, to averaging the 25 variables). Here, the proposed GA will be

executed N times, keeping the number of selected variables (K) constant in

each execution. The initialization, mutation and crossover functions have been

specially designed to fulfill that requirement: instead of adding constraints to the285

GA, all the individuals are randomly initialized to feasible ones (i.e. individuals

with K selected variables), and the mutation and crossover functions do not

allow the appearance of infeasible chromosomes. Figure 4 shows an illustrative

example of the initialization, crossover and mutation processes, where there are

N = 8 candidate variables and K = 3.290

Firstly, regarding the initialization process, as many individuals as the popu-
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= ( … ),  = {0, 1}

=    =

Example:

= 01001001 = 11000010

K = 3, = 8, = 100

Initialization: create 100 feasible individuals, such as:

Mutation: random exchange of a selected (1) and an omitted variable (0)

= 01001001 = 11000001

Crossover: random weighted sampling of 3 variables 

= 01001001

= 11000010

2, 5, 8

1, 2, 7

1

2

5

7

8

Sampling weights

= 01001010

= 11000001

2, 5, 7

1, 2, 8

…

…

Figure 4: Illustrative example of the initialization, crossover and mutation func-

tions of the proposed GA. Variable selection problem with N = 8 candidate

variables and K = 3 selected variables is shown. Using these three functions,

the feasibility of each individual (i.e. K = 3) is granted during the GA while

the problem keeps unconstrained.

lation size indicates are generated. It can be seen that only individuals with the

right number of selected variables (K) are always created. Furthermore, as the

population size can be greater than the total number of possible variable com-

binations for some values of K, all the feasible different individuals are forced295

to be generated in that cases. On the other hand, if the population size does

not cover all the search space, all the randomly generated individuals are then

forced to be different. In the example of Figure 4, as there are only 8C3 = 56
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possible subsets of three different variables among the 8 candidates (full search

space), creating 100 individuals during the initialization process would force the300

generation of that 56 different individuals and some redundant ones. It should

be noted that doing that would be equivalent to carry out the most straight-

forward solution to this problem: examine all the possible combinations of the

variables exhaustively, a ’brute force’ solution only feasible when the number of

combinations is small as in this case. For example, in the GefCom2014 variable305

selection problem, we start with a search space of 25 points when K = 1, but

in the worst case scenario, given by the combinations of 12 and 13 different

variables (25C12 and 25C13), there are more than 5 · 106 possible combinations.

In fact, to test all the possible temperature combinations exhaustively in the

GefCom2104 problem (for any value of K), more than 33 ·106 calls to the fitness310

function would be required (
25∑
i=1

25Ci).

Secondly, regarding the crossover function, the aim will be to generate a

crossover child for two given individuals (parents), keeping constant their num-

ber of selected features, and having into account the importance of each one. To

do that, all their candidate variables are initially listed and, according to their315

occurrence, their weights are calculated in order to carry out a weighted random

sampling, selecting then K of that variables. In the example of Figure 4, both

chromosomes contain a total of 5 different candidate variables, appearing twice

the variable number two, so it will have twice as much weight than the other

four in the subsequent random sampling, and therefore will be twice as likely to320

appear as a selected variable in the crossover child.

Finally, the mutation function follows a quite simple approach, it just ex-

changes a zero by a one of the chromosome, both randomly selected. In the

example, the initially omitted variable number one is selected by the mutation

child, whereas the variable five stops being one of the selected ones. It should325

be noted that these two functions, together with the initialization one, allow fol-

lowing a double objective: ensuring that all the individuals have a constant K

and favouring the presence of the most important variables for each generation

of the GA.
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4. Results330

In order to follow a similar approach to [5] and build the error curve for

any value of K, the GA is executed 25 times independently, obtaining the best

temperature combination at each step. Before each execution of the GA, the

initial population is created, generating a set of individuals with the correct value

of K. Regarding the population size, several tests have been done, varying from335

200 to 10000 individuals, and a value of 1000 have been finally chosen for all the

executions. It should be noted that for those values of K that lead to a number

of possible combinations less than a thousand (i.e. 25C1 = 25, 25C2 = 300, and

25C25 = 1) all the search space has been exhaustively explored and the best

temperature combination has been definitely found. It is also remarkable that340

the tests that have been carried out by randomly varying the initial population

(initial search point), with population sizes of 1000 and 10000, have provided

the same results in terms of selected variables and therefore, error.

Figure 5 shows the order in which the different weather stations have been

selected by the GA with different values of K, compared with the ones used in345

[5] after ranking the variables according to their in-sample error. It can be seen

that they are noticeably different. First, as aforementioned, the combination

of Jingrui begins with the weather stations 10, 22, and 25, in spite of the fact

that they are highly correlated. The GA begins adding the variable 25, but

when K = 2 that variable is removed and the average of variables 6 and 10 is350

selected, and, as will be shown later, that combination has already less error

than the combination chosen by Jingrui for that value of K. From that point,

the weather station w6 is systematically selected by the GA in every execution.

Regarding the behaviour of the GA in that entry sequence of variables,

Figure 5 shows that we cannot make an unique ranking of the best temperatures355

attending to their order of selection, but there are only three points that break

that idea of incremental sequence. To begin with, the variable 25 is selected in

first place, and it is immediately removed when K = 2. After that, it will not

be selected since the combination of 11 weather stations. The second breaking
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Figure 5: Order of variable selection in both the WSS method of [5] and the

proposed GA. Each column represents the set of selected temperatures for a

given value of K, and each row a weather station (1-25).

point appears between the combination CW6 and CW8, when the variable 22360

seems to replace the variable 13, being omitted afterwards in the combination

of K = 8, when the station 13 is selected again. The last case, similar to the

second one, begins with K = 14, when the weather station 16 is selected at the

expense of the variable 8, being removed in the next execution of the GA, and

selected again when K = 16. This behaviour may be due to the independence365

of one execution of the GA and the following, the randomness of the initial

search point and, above all, the high correlation between the temperatures that

can lead to several similar solutions even combining different temperatures. For

example, it is known the high correlation of the variables 10 and 25 that are

exchanged when K = 2. It is also remarkable that, for the first two values of K,370

the search space have been exhaustively covered, so that these two combinations

are the best ones in terms of in-sample RMSE, thus replacing w25 by w25 in
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Figure 6: Size of the search space for each value of K (Top) and actual number

of combinations tested by the GA at each iteration (Bottom).

CW2 is correct.

On the other hand, regarding the size of the search space, given by the

total number of different temperature combinations that can be explored at375

each iteration, Figure 6 shows its actual size for each value of K (25CK), and

the actual number of options that has been covered by the GA search in each

execution. It can be seen that, as expected, the bigger the search space is, the

greater the number of combinations required by the GA to find the optimum

solution is. However, it should be noted that, far form covering exhaustively380

that search space, the algorithm is obtaining a good solution exploring only a

small part of it skilfully. For example, the most extreme case is given for K = 12,

where there are more than 5 · 106 (25C12) different possible combinations, and

only 0.23% of them has been required by the GA to find an optimum solution.

Considering the whole set of executions, only 0.34% of the full search space has385

been covered.
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Figure 7: Error curves of the different temperature combinations, using the

method of [5], and the proposed GA. The in-sample error curves (Top) and the

out-of-sample error curves (Bottom) of both methods are shown.

Finally, Figure 7 shows the in and out-of-sample error curves obtained for

each value of K, using the set of temperatures selected by the GA at each step,

and also the ones formed using the ranking of the Jingrui team. For more detail,

and in order to easily compare the results of both WSS methods for each value390

of K, Table 2 shows the sequence of selected variables of both methods, and

their in-sample and out-of-sample errors.

From the very first points of the curves, the combination chosen by the

GA outperforms the one selected by the other method. In this case, the fact

of adding the station number 6 when K = 2, instead of continue adding the395

stations 10 and 22, very correlated with the first one, turns to be determinant

in terms of error. It is remarkable that the first point of the curves of both

methods are not the same, but very similar, in spite of the fact that in both

cases it should be simply the best station in terms of error in the in-sample set:

the GA selects the weather station 25 and the Jingrui team selected the variable400
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Table 2: Summary of the sequence of weather stations selected for each value of

K by both the GA and Jingrui team methods. The two last columns show the

in-sample and out-of-sample errors, using the Vanilla model. The values with *

represent the lowest error for each method. The bold value represent the lowest

out-of-sample error reached.

K Added stations Removed stations RMSE (in-sample) RMSE (out-of-sample)

Jingrui GA GA Jingrui GA Jingrui GA

1 10 25 - 12.260 12.207 14.994 14.844

2 22 6,10 25 11.465 10.643 13.875 12.942

3 25 13 - 11.095 10.050 13.559 12.274

4 6 14 - 10.318 9.715 12.579 11.478

5 7 2 - 10.257 9.477 12.603 11.321

6 24 11,22 13 10.101 9.432 12.430 11.369

7 13 21 - 9.939 9.363 12.323 11.231

8 8 7,13 22 9.998 9.298 12.367 11.222

9 21 22 - 9.716 9.264 12.029 11.217

10 2 18 - 9.590 9.270 11.842 11.212*

11 18 25 - 9.523 9.281 11.772* 11.324

12 15 19 - 9.614 9.312 11.830 11.477

13 23 8 - 9.727 9.340 11.990 11.513

14 20 16,24 8 9.760 9.405 14.994 11.608

15 5 8,20 16 9.878 9.464 12.115 11.686

16 16 16 - 9.961 9.536 12.213 11.770

17 11 15 - 9.929 9.617 12.196 11.838

18 1 23 - 10.039 9.700 12.354 11.972

19 4 9 - 10.124 9.784 12.450 12.031

20 12 5 - 10.218 9.869 12.505 12.078

21 14 12 - 10.077 9.964 12.271 12.142

22 19 1 - 10.111 10.075 12.370 12.298

23 17 4 - 10.239 10.192 12.450 12.425

24 9 17 - 10.324 10.324 12.512 12.512

25 3 3 - 10.462 10.462 12.700 12.700
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Figure 8: Weather stations selected for K = 5 by the two WSS methods: Jingrui

(Left) and the proposed GA (Right). The coloured clusters of the in-sample

dendrograms correspond to those formed using a correlation threshold of 0.98.

number 10. This fact is due to the difference in the error metric used in each

case: in spite of the fact that these two stations are the best ones using RMSE or

MAPE, the station 25 is the one with the lowest RMSE (12.207 against 12.260),

whereas the station 10 is the one with the lowest MAPE (9.100 against 9.280),

both in the in-sample set.405

Comparing the evolution of the error in both methods, it can be seen that

the curves from the GA present a much deeper decrease in error, mainly from

K = 1 to K = 5, while the Jingrui method, not only decreases in a slower way,

but also, it does not reach the errors of the GA. As can be seen in Figure 8,
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Table 3: Summary of the in-sample and out-of-sample errors obtained with the

Vanilla model, using the temperature combinations selected by Jingrui team

and the GA. The last two columns show the results of the Diebold Mariano

statistical test, which compares the predictive accuracy of the forecasts of both

methods.

Jingrui (K = 11) GA (K = 10) Error improvement DM test

RMSE RMSE ∆RMSE (%) Statistics p-value

In-sample 9.523 9.270 2.657 12.228 0

Out-of-sample 11.772 11.212 4.757 13.229 0

where the combinations of both methods when K = 5 are shown over the410

dendrogram of Figure 3, the reason of these differences in error is clear. Whereas

the WSS incremental method of Jingrui is adding correlated variables first, the

GA takes advantage adding other relevant time series. The cluster formed by

temperatures 10, 22, and 25, is represented in the GA set by w10, that enters

when K = 2, being the other 4 variables determinant for reducing the error.415

This last figure evidence one of the main problems of the method presented

in [3]: in spite of averaging all the different temperatures with equal weights, the

fact of adding temperatures in a sequential way based on an individual error

ranking can lead to suboptimal solutions. Furthermore, we can be assigning

greater weight to a given temperature or geographical area if there are several420

very similar temperatures in the candidate set. If the temperatures of this

problem came from a country with five different areas equally relevant to the

demand, and there were more than one available temperature from one of them

(i.e. if all the temperatures the cluster formed by the stations 10, 22, 23, and 25

came from a given zone), using the individual error ranking as selection criteria425

would cause that the area would have three times the weight of the others, and

even, if we would select the combination with K = 5, we would ignore the other

two.

To conclude, and attending to Table 2, using the GA approach the minimum
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error in the out-of-sample set is obtained for the combination of K = 10 stations,430

so that would be our selected set of temperatures. Specifically, the selected

weather stations would be: 2, 6, 7, 10, 11, 13, 14, 18, 21, and 22. Table 3

summarizes the errors of the compared WSS methods, and includes the results of

the Diebold-Mariano statistical test [19], in order to measure the significance of

the predictive accuracy improvement obtained using the temperatures selected435

by the GA. It can be seen that we obtain significant improvements, in and

out-of-sample, over the error of the method of the Jingrui team, with a time

series less. Finally, it should also be noted that the out-of-sample error curves

provided by the GA are quite flat from the combination of K = 7 to K = 10 so

we could choose a set with even less temperatures, keeping an improvement of440

4.6% over the other method.

5. Combining temperatures with different weights

This last section aims at measuring the impact of combining the selected

temperatures using different weights instead of simply averaging. In spite of

the fact that the most common approach in GefCom2014 was to average the445

selected time series, several examples of weighted combinations can be found in

the literature. For example in [20], the weighted average by economic factors

and load level per region are tested, concluding that the average was superior

in that case. Here, the error improvements achieved optimizing the weights of

the selected temperatures will be measured.450

Since in GefCom2014 no geographical or economical information about the

different weather stations was provided, approaches like those described in [20]

can not be applied in this case. Our goal will be to find the optimum weights

to the set of K temperatures that has been selected using the GA, minimizing

the error when using the same load forecasting model. The Broyden-Fletcher-455

Goldfarb-Shanno (BFGS) algorithm [21] is a quasi-Newton method for uncon-

strained non-linear optimizations problems. This method, and specially, its

simplified limited-memory version (L-BFGS) [22] has been widely used in the

23



Table 4: Summary of the in-sample and out-of-sample errors obtained with the

Vanilla model, using the temperature combinations selected by Jingrui team

and the GA, and combined by averaging or using the optimized BFGS weights.

The last two columns show the results of the Diebold Mariano statistical test,

which compares the predictive accuracy of the forecasts with and without BFGS.

Method Average BFGS weights Error improvement DM test

RMSE RMSE ∆RMSE (%) Statistics p-value

Jingrui In-sample 9.523 9.380 1.527 10.386 0

Out-of-sample 11.772 11.541 2.001 6.618 3.64e-11

GA In-sample 9.270 9.225 0.492 6.469 9.89e-11

Out-of-sample 11.212 11.127 0.769 4.876 1.08e-6

literature to optimize parameters in diverse machine learning problems, such

as [23] or [24]. Using this algorithm, the Hessian matrix of second derivatives460

is not computed, but it is approximated using updates specified by gradient

evaluations. In our case, these updates will be given by different evaluations of

the Vanilla model, varying the weighted average of the previously selected tem-

peratures. Therefore, here the variables to optimize will be the set of weights

of the K selected temperatures, whose module will be set to one before each465

iteration.

Following the same methodology of previous sections, the in-sample data

will be used to optimize the weights and the error will be measured both in and

out-of-sample. To illustrate our results, Table 4 shows the errors obtained before

and after optimizing with BFGS, and Figure 9 shows the weights obtained for470

each temperature using the temperature sets selected by both WSS methods

(Jingrui team and GA). Observing Table 4 and Figure 9, several conclusions

can be drawn:

• The average is not the best option: optimizing the weights provides sig-

nificant error improvements both in and out-of sample, and for both WSS475

methods. In this case, the out-of-sample error improvements achieved
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Figure 9: Weights obtained using BFGS to minimize the error using Vanilla

model, and the temperature sets determined by the method of Jingrui team [5]

and the proposed GA.

against the average vary between 0,77% and 2%.

• The temperature combination of Jingrui team always provides greater er-

rors than the GA, even when comparing its results using optimized weights

against the GA using the average.480

• GA combination seems to have less room for improvement: the error re-

duction obtained with Jingrui temperatures is nearly three times greater

than the ones obtained optimizing the GA ones (both in and out of sam-

ple). As can be seen in Figure 9, BFGS is reducing the effect of some

temperatures, such as w25, that has a weight of 1.5%. Weights of GA485

temperatures are more equilibrated: w18 is the one with lowest weight

(4,5%), but removing them from the set increases the final error.

• BFGS can decrease the effect of temperatures that should not be in the

final set but, obviously, can not add not considered ones.

In summary, this section has proven that combining the temperatures using490

different weights can provide better results than simply averaging. The fact of
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not having geographical or economical information about the problem does not

prevent using different weights: in this case, using BFGS improves our final

results, both in and out-of-sample (they are not over-fitted). Finally the fact of

having less room for improvement in the GA case than in the other method, and495

having obtained a set of balanced weights, highlights once again the goodness

of the previous temperature selection of the GA.

6. Conclusions

Temperature is one of the most important drivers of electricity load, and

selecting the right station or combination of stations is crucial in terms of error.500

Furthermore, there is not a unique set of optimum temperatures to be chosen:

the structure of the forecasting model, or the use that it makes of the different

explanatory variables (trend, calendar variables, temperatures...) can determine

the best stations for each one. In this paper we analyse the different weather

selection methods (WSS) used during the GefCom2014 load forecasting com-505

petition, and propose a new approach, based on genetic algorithms (GA), that

can be used with any load forecasting model, presents an easily reproducible

implementation, and outperforms the results of the other presented methods.

Furthermore, we analyse the effect of optimizing the weights of the selected

temperatures using BFGS, concluding that the average is not always the best510

option, proving the goodness of the variable selection made by the GA, and re-

ducing the error achieved by the GA approach and other alternatives from the

GefCom2014 competition. Finally, this paper deals with the problem of creat-

ing a virtual temperature time series to be used as input to a load forecasting

model. As next steps, the possibility of selecting a sub-set of temperatures to be515

used by the forecasting model will be tested, in order to consider the different

responses of the demand to several temperatures or the importance of one or

the other weather station depending on the time period.
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